A variational $\boldsymbol{H}({\rm div})$ finite-element discretization approach for perfect incompressible fluids

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids

Using the generalized variable formulation of the Euler equations of fluid dynamics, we develop a numerical method that is capable of simulating the flow of fluids with widely differing thermodynamic behavior: ideal and real gases can be treated with the same method as an incompressible fluid. The well-defined incompressible limit relies on using pressure primitive or entropy variables. In part...

متن کامل

A finite element variational multiscale method for incompressible flow

In this article, we present a finite element variational multiscale (VMS) method for incompressible flows based on two local Gauss integrations, and compare it with common VMS method which is defined by a low order finite element space Lh on the same grid as Xh for the velocity deformation tensor and a stabilization parameter a. The best algorithmic feature of our method is using two local Gaus...

متن کامل

Discretization of Hamiltonian Incompressible Fluids

D-08-479 Discretization of Hamiltonian Incompressible Fluids Gemma MASON, Computing and Mathematical Sciences, California Institute of Technology, [email protected] Christian LESSIG, Dept. of Computer Engineering & Microelectronics, Technische Universität Berlin, [email protected] Mathieu DESBRUN, Computing and Mathematical Sciences, California Institute of Technology, [email protected]...

متن کامل

Variational Discretization for Rotating Stratified Fluids

In this paper we develop and test a structure-preserving discretization scheme for rotating and/or stratified fluid dynamics. The numerical scheme is based on a finite dimensional approximation of the group of volume preserving diffeomorphisms recently proposed in [25, 9] and is derived via a discrete version of the Euler-Poincaré variational formulation of rotating stratified fluids. The resul...

متن کامل

Structure-preserving discretization of incompressible fluids

The geometric nature of Euler fluids has been clearly identified and extensively studied over the years, culminating with Lagrangian and Hamiltonian descriptions of fluid dynamics where the configuration space is defined as the volume-preserving diffeomorphisms, and Kelvin’s circulation theorem is viewed as a consequence of Noether’s theorem associated with the particle relabeling symmetry of f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IMA Journal of Numerical Analysis

سال: 2017

ISSN: 0272-4979,1464-3642

DOI: 10.1093/imanum/drx033